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A PHOTOMETRIC FUNCTION FOR DIFFUSE REFLECTION

BY PARTICULATE MATERIALS

By Willard E. Meador and Willard R. Weaver

Langley Research Center

SUMMARY

A photometric function is proposed to describe the diffuse reflection of radiation

by particulate materials. Both multiple scattering and the dominant effects of particle

shadowing are included and the function is verified by comparisons with the photometries

of laboratory surfaces. The function is a major improvement over the frequently used,
strictly empirical, and much simpler Minnaert function in that brightness measurements

of planetary and other diffusely scattering surfaces can be used to calculate the brightness

for geometries other than those used in the measurements and for which the Minnaert

function does not apply; the measurements also can be directly related to such surface

characteristics as particle size, single-particle albedo, and compactness.

INTRODUCTION

The difficulty in obtaining in situ information about a planet makes it desirable to

have a photometric function for planetary surfaces that describes the surface brightness

as a function not only of the angles of incidence, emission, and phase, but also the physical

properties of the material that forms the surface. The most commonly used photometric

function for correlating and analyzing data on planetary surfaces and for describing the

reflection from (or brightness of) planetary surfaces is the well-known Minnaert function.

(See ref. 1.) The Minnaert function, however, has very insufficient basis in theory, is not
derived from first principles, is restricted in validity to certain classes of scattering

geometries, and, of considerable importance, cannot be used to interpret photometric

behavior in terms of the physical properties of the reflecting surface.

In principle at least, photometric functions can be found from solutions to radiative

transfer equations governing the passage of radiation between and through the particles

comprising a particulate surface. Current transfer equations are restricted by the classi-

cal, and often inappropriate, simplifying assumption of sufficiently large interparticle sep-

arations for each particle to be in the far field for scattering by every other particle.

(See ref. 2.) These equations, therefore, neglect the frequently important phenomenon of



mutual shadowing of the particles. Perhaps the best method to date for including mutual

particle shadowing in radiative transfer theory is that of Irvine (ref. 3), who corrected

the single-scattering term in a Neumann series solution in powers of the single-particle

albedo. In such an approach the original transfer equation is not corrected. Since the

transfer equations describing successive orders of scattering are closely coupled in the

Neumann scheme, the use of a corrected first-order solution in the source function of

the uncorrected second-order equation may yield important inconsistencies. As will

be shown, an additional difficulty is present because the results of reference 3 do not

approach the proper limit when applied to geometries involving grazing incidence or

emission.

The purpose of the present paper is to propose and test a photometric function for

diffuse reflection that allows direct determination of surface characteristics from meas-

ured brightness data. The function is a linear combination of a modification to Irvine's

shadow-corrected, but otherwise exact, solution of the classical first-order transfer

equation in the limit of very low albedo and Lambert's scattering law in the opposite limit

of very high levels of multiple scattering. This approach has been proposed elsewhere

(ref. 4) but without experimental verification and with earlier and less acceptable theories

for the contribution of single scattering. The present research is the first to provide

verification of this approach by comparisons with the experimental brightness of several

laboratory surfaces.

Appearing in the equation for normalized brightness are three empirical param-

eters that are related to particle size, single-particle albedo, and compactness. These

material properties are thus potentially determinable from comparisons of the function

with photometric measurements. Laboratory measurements have shown that variations

of these empirical parameters with changes in the properties of the surfaces are in good

qualitative agreement with the theoretical interpretations.

SYMBOLS

A' overlap area common to the cylinders of incidence and emission

A" specific area (see eq. (A9))

a0  photometric parameter in phase function

al photometric parameter, C 2/C 1

a2 packing factor, np 3
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B parameter in equation (17)

C proportionality factor, I/cos i

C 1  parameter proportional to weight factor for single scattering

C2  parameter proportional to weight factor for multiple scattering

F net flux of impinging collimated radiation perpendicular to beam

f shadowing-correction factor

G function defined by equation (B10)

g function defined by equation (All)

H function defined by equation (B9)

h depth within scattering material

I intensity of radiation perpendicular to beam reflected from a semi-infinite

material

I 1  first-order radiation intensity

i incident angle with respect to surface normal of impinging collimated

radiation

J1 function defined by equation (Bll)

J2 function defined by equation (B12)

K volume absorption coefficient

k Minnaert exponent

N number of particles contained in volume V of particulate material

n particle number density
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P probability that no particle center lies within volume v

p phase function

S volume scattering coefficient

V total volume of particulate material

V' total overlap volume of cylinders of incidence and emission

v sum of volumes of two cylinders of cross-sectional area 7rp 2 that extend

from a scattering particle at depth h within the material to the surface

in the directions of incidence and emission

v' overlap volume of two cylinders of cross-sectional area up2

v" function defined by equation (A14)

x integration variable (see eq. (A10))

aphase angle between directions of incidence and emission

single particle albedo

y angle between i-axis and projection of h onto rz-plane

6 angular deviation from mirror-point geometry

E emission angle with respect to surface normal of observed scattered

radiation

p. function defined by equation (7)

v function defined by equation (8)

,7,z rectangular Cartesian coordinates (see fig. 8)

p effective particle radius
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7 optical depth, nTp2 h

4 surface brightness (with shadowing) normalized to unity at i = E = 0

' surface brightness (without shadowing) normalized to unity at i =E 0

Subscripts:

1 lower limit of integration

2 upper limit of integration

THEORETICAL DEVELOPMENT

Low-Albedo Limit

In the limit of very low albedo, the photometric function employed in this research
will be required to approach (apart from shadowing corrections to be introduced subse-
quently) the exact solution of the following radiative transfer equation (ref. 3) for first-
order (that is, single) scattering:

dI (Ti, E a) IFp( )
cos = I1 (T,i,E,) exp - (1)d 47 (os1)

where Il is the first-order radiation intensity at depth h within the material, i is
the incident angle of the impinging collimated beam of net flux F, E is the emission
angle of the observed scattered radiation, a is the phase angle between the emission
and incidence directions, 7 is the optical depth (K + S)h, and K and S are the
absorption and scattering coefficients, respectively. The phase function p(a) is defined
so that Ip(c)/47~, where 3 = S/(K + S) is the single-particle albedo, represents the
fraction of the light incident on a particle that is scattered into a unit solid angle about a
vector inclined at r - c~ radians from the incident direction. Hence, p(0) must sat-
isfy the normalization condition

p(a) sin a doa =2 (2)

The solution of equation (1) for the intensity reflected from a semi-infinite, single-
scattering material is
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I (0,i,E,a) iF(K + S)p(a) exp (-nv) dh = P () cos (3)
4n cosE "O 4Ir(cos i + cos E)

where n is the particle number density and v = (K + S) C(1/cos i) + (1/cos E]h/n. If

the coefficient K + S is equated to n times the cross-sectional area 7p 2 corre-

sponding to the effective particle radius p, then v becomes the sum of the volumes of

two cylinders with cross-sectional areas 7Tp2 and with lengths equal to the distances

between a scattering particle and the surface of the material, as measured along the direc

tions of incidence and emission, respectively.

Equations (1) and (3) involve the implicit assumption that the particles comprising

the scattering material are sufficiently far apart that each particle is in the far field for

scattering by every other particle. Hence, the phenomenon of interparticle shadowing,

which is important for most planetary surfaces, is not included. As shown in appendix A,

Irvine (ref. 3) attempted to correct this deficiency by applying the principles of geomet-

rical optics. Those results can be written in the following form for general scattering

geometries:

Il(0,i,oa) = 3Fp(a) cos i f (iE,a2) (4)
47(cos i + cos E)

where

f(i,E,a,a 2 ) = e A - + exp - T3x + 2 2 + x2) - x2) 1/2 + 6x sin - 1  dx (5)

a 2 = np 3  (6)

4a2 (1 + cos a)
sn= (7)

and

S= (O i co in a + 2(1 + cos a) cos i cos1/2 (8)
sin a cos 1 cos EI

The parameter a2 is the packing factor of the material and f(i,E,,a 2 ) is the

shadowing-correction factor.
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The model of reference 3 for single scattering is used in the present paper with

two reservations. First, the radii of the incident and emission cylinders may be some-

what larger than the mean particle radius because of diffraction effects. The incident

radiation aimed at a differential surface element of a given target particle will suffer

losses by three mechanisms operating along its path starting at the surface of the

material: absorption by intervening particles, scattering by intervening particles

(treated individually), and diffraction of part of the radiation as it passes through the gaps

between particles. The present theory, being a geometrical-optics approximation,
includes only the first two mechanisms. If diffraction contributes a small, but not insig-

nificant, amount to the radiative attenuation, the geometrical optics approximation will

tend to become invalid, mutual particle shadowing will be reduced, and a2 will fall

below its geometrical value given by equation (6). If, on the other hand, the diffraction is

strong enough to divert radiation from the cylinders of incidence and emission and, thus,
add to the effective coefficients of scattering and absorption, a 2 will exceed its geo-

metrical value. Such strong diffraction can occur for sufficiently packed particulate

materials and for sufficiently long wavelengths because the interparticle gaps through

which the radiation passes can be made much smaller than the particles themselves. The

implicit assumption, of course, is that the simple theory herein described can be made

to include diffraction effects by the relaxation of the purely geometrical requirements on

a 2 and also the geometrical optics restrictions enumerated in reference 3. The subse-

quent agreement of the theory with experimental data tends to confirm this assumption.

The second reservation concerns the behavior of equation (5) for large angles of

incidence or emission. That the analysis in reference 3 is somehow inadequate and not

generally valid is evident from the limit (see appendix A)

f(i or E = 7/2; a2 0 ) = 0 (9)

This result is clearly nonphysical because under no circumstances should f be less than

unity and thereby reduce the reflected intensity below its classical value given by equa-

tion (3). In fact, the entire purpose of the shadowing correction of reference 3 was to

reduce the attenuation of radiation within the material (and thus increase the emerging

intensity) by counting the scattering and absorption of a light beam only in the incident leg

of its total path through the volume v' shared by the cylinders of incidence and emission.

Since the improper limit of equation (5) occurs at grazing incidence or emission, it

will not significantly affect the determination of the photometric parameters in the present

analysis because the experimental data are confined to angles of incidence and emission

of 750 or less. However, to avoid most of the error caused by equation (5) for computa-

tions carried to large angles of incidence or emission, the following straightforward pro-

cedure is suggested and will be used for all subsequent calculations: use equation (5) for
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all scattering geometries for which f exceeds unity and replace equation (5) with f = 1
for larger values of i or E. This approach might seem crude, as opposed to undertak-
ing a detailed theoretical modification to the equations of reference 3, but the subsequent
analysis will show that the aforementioned correction is adequate. Equations (4) to (8),
together with the aforementioned procedure for correcting equation (5), thus represent the
low-albedo limit to be used in the remainder of this analysis.

Two other important limits of f that will be useful in the subsequent analysis are
the following:

f(a 2 = 0) = 1 (10)

for all values of oz, which is the classical result for zero ratio of particle size to mean
free photon path, and

f(a = ; a2  O) = 2 (11)

which corresponds to the well-known opposition effect. (See ref. 5.)

High-Albedo Limit

For reasons covered in the "Introduction," especially with regard to the possibility
of important inconsistencies in the method proposed by reference 3 for including higher
scattering orders, no attempt will be made to apply ab initio techniques to problems
involving multiple scattering. Instead, the intensity in the high-albedo limit of very large
multiple scattering is assumed to satisfy the Lambert formula

I= C cos i (12)

which corresponds to the complete directional randomization of the incident radiation by
a multitude of scattering events.

No theoretical derivation of equation (12) exists from first principles. However, its
use can be justified under certain conditions by comparisons with Chandrasekhar's calcu-
lations (ref. 2, p. 147) of the diffuse reflection from semi-infinite atmospheres comprised
of isotropic or Rayleigh scatterers. He found that for a fixed incident angle and suffi-
ciently large phase angle, the single-scattering contribution to the brightness increases
with phase angle, whereas the total brightness computed from all levels of multiple
scattering tends to decrease with phase angle. The first of these effects is evident from
equation (4) without the f-factor, and the second follows from the fact that multiple scat-
tering, which enhances the brightness, increases with the depth below the atmospheric



surface. Since the depth of the contributing particles decreases with increasing phase

angle because of attenuation within the atmosphere, emerging radiation that has been

multiply scattered falls off and thus the brightness diminishes. The photometries of

bright planetary surfaces, on the other hand, should behave somewhat differently than

those of atmospheres because of the far greater particle densities involved. Large mul-

tiple scattering occurs in this case within a few particle diameters below the surface;

hence, the aforementioned depth-attenuation effect should be much less significant so that

the brightness will be relatively insensitive to variations in the phase angle. In addition

to these theoretical arguments, support for the use of the Lambert formula in the limit

of high albedo is obtained from reference 5 which reports measurements on a bright,

heavily smoked MgO surface that are consistent with the Lambert formula.

Photometric Function

The diffuse radiative reflection by a semi-infinite particulate material of any given

albedo is assumed to be adequately described by the following linear combination of equa-

tions (4) and (12):

p(ot) f(i,E,a,a 2 ) cos i
I(i,E,a) = C 1  + cos + C2 cos i (13)

Cos i + Cos E

where C 1 and C 2 are proportional to the weight factors for the two extremes of single

scattering and high-order multiple scattering. Expressions of this form, with f either

being unity or the Hapke (ref. 6) shadowing-correction factor, as opposed to that of Irvine,
have been previously proposed (see ref. 4) but never verified experimentally. With the

aid of equation (11) and the introduction of a 1 for the ratio C2 /C 1, equation (13) can be

represented in normalized form (that is, normalized to unity at i = e = 0) by the function

(ia)= cos i [p(a) f(i,e,a,a 2 ) + al(cos i + cos e (14)
p() + al (cos i + cos e) I

The parameter al is thus a measure of the multiple scattering occurring in the particu-
late material and therefore relates to the single-particle albedo. Its value ranges from

zero for very dark materials to infinity for Lambert surfaces.

Except for the specification of the phase function p(a), the formulation of the

photometric function is now complete. For the purposes of the present analysis, the

phase function

p(a) = 1 + a 0 cos a (15)
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will be used because it qualtitatively describes the entire range of simple scattering laws

from predominantly forward scatter for -1 - a 0 < 0 (for example, transmission through

small particles) to predominantly backscatter for 0 < a0 5 1, including isotropic scat-

tering at ao = 0. Accordingly, equation (14) becomes

) (ic ia) = os + os )f(i,,a,a 2 ) + al(cos i + cos (16)

1 + a + al) (os i + os ) (16)

Equation (16) is thus the complete form of the photometric function proposed for use in

the analysis of diffuse reflection from particulate materials. The reader is cautioned

that f must be corrected according to the discussion following equation (9).

Although the linear combination of terms in equation (16) was not derived from first

principles, it will be seen in subsequent sections to be in good quantitative agreement

with experimental brightness data. Moreover, variations in the physical properties of

laboratory surfaces will be shown to cause changes in the parameters a0 , al, and a 2

that are consistent with their theoretical interpretations; thus, the determination of these

parameters from fits of equation (16) to photometric measurements should yield valuable

information on surface characteristics. It is instructive, however, first to consider some

of the implications of equation (16) pertaining to the familiar Minnaert function (ref. 1) and

to the prediction of several well-known planetary photometric phenomena.

The Minnaert function

1(i,E,C) = B(a) (cos i)k(a)(cos E)k(c)-1 (17)

is shown in appendix B to be in good agreement with equation (16) for variations of i

and E with a held fixed and coincident planes of incidence and emission, provided the

deviation from the mirror-point geometry (that is, equal incident and emission angles on

opposite sides of the surface normal) is not too large. This class of scattering geome-

tries is especially important because the Minnaert function is known to represent ade-

quately the photometries of at least the surfaces of Mars and of the Moon for such condi-

tions (for example, refs. 7, 8, and 9 on photometric measurements of Mars).

The implications of equations (13) and (14) at zero phase angle can also be studied.

By using equations (10) and (11) and the relation a 1 = C 2 /C 1 in equation (13), one

obtains

i =E; a 2  0) _2[p(0) + a cos (18)

I(i= e; a 2 =0) p(O) + 2al cos i

10



An immediately obvious conclusion is that low planetary albedos (small al) are corre-

lated with large opposition effects, as was found by Thompson (ref. 10) and as should be

expected on the basis that the particle-shadowing origin of the opposition effect can be

dominant only in the single-scattering contribution and should rapidly diminish as the

level of multiple scattering increases. A second result follows from

2a
4'(i = E; smallal; a 2  

0 ) = 1 - (1 - cos i) (19)

which is the first-order expansion in al. of the normalized (no shadowing) brightness

E'(i,,a; a 2  0)= 2 cos i c(a) + a l (cos i + cos e) (20)
p(0) + 2al (cos i + cos E)

obtained from equations (10) and (13), and the following expansion of equation (14):

4(i = e; small al; a 2  0) =1 - (1 - cos i) (21)

Equation (19) (no shadowing) and equation (21) (shadowing) indicate that a low albedo

(small al) generally means a small amount of planetary limb darkening. The reduced

sensitivity to i of equation (21) means even less limb darkening when shadowing is

present. One notes that the moon is relatively dark, has a strong opposition effect due

to shadowing, and displays practically no limb darkening. (See ref. 6.)

PHOTOMETRIC MEASUREMENTS

Laboratory brightness measurements were made to provide support in the develop-
ment and the verification of the photometric function. Photometric data were taken on
two materials: a Colorado basalt and a basalt dune sand. The Colorado basalt is a
mafic latite porphyry from an area in the vicinity of the Ralston intrusives and the Table
Mountain region of Colorado; the basalt dune sand is believed to have originated from the
airfall cinder sheet deposited in the eruption of Sunset Crater and transported by aeolian o

processes to an area of active dunes 25 km east of Flagstaff, Arizona. The basalts have
properties that may be similar to those of the Martian surface material and they have
silicon-dioxide contents within the range measured by the infrared spectroscopy experi-
ment on Mariner 9 as being representative of the content of the Martian dust. (See ref. 11.)
The latite was mechanically crushed to small sizes, but the dune sand was used unaltered.
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Each material was mechanically sieved into two particle-size ranges; figure 1

gives the particle size distributions of the test materials. Loosely packed, optically

thick test surfaces were formed by sifting the particles upon flat base layers of the same

material. The surfaces were contained within a 1.5-m-diameter pan and were illuminated

by parallel light from a high-pressure, short-arc mercury lamp at the focal point of a

61-cm-diameter parabolic mirror. Reflected light was measured with a silicon-diffused

photodiode at the focal point of a second 61-cm-diameter parabolic mirror. Both mirrors

are movable along a semicircular guide 3.7 m in diameter. Figure 2 is a photograph of

the photometric apparatus. Although the use of large mirrors prohibits measurements

at small phase angles (in this case smaller than 300) and results in a definite disadvantage

for the present purposes, the large illuminated areas permit possible future studies of the

photometric effects of rough surface topographies which are more difficult to represent

on a smaller scale.

Photometric data for coplanar scattering geometries were taken as the two mirrors

were moved in unison (2.50 steps) along the supporting guide and thereby the angles of

incidence and emission were changed while the phase angle was held constant. Sets of

measurements on each of the four laboratory materials (namely, two particle-size ranges

for each of the basalts) were obtained in this manner for eleven values of the phase angle

from 300 to 800 in 50 steps.

DATA ANALYSIS

The determination of the three photometric parameters ao, al, and a 2 was

accomplished by comparing equation (16) with brightness measurements for two classes

of scattering geometries: variations of i and E with a held constant and variations

in a with e fixed at 00 . All measurements were restricted to coincident planes of

incidence and emission. An iterative procedure was followed that involved choices of the

parameters until the brightnesses computed from equation (16) were in satisfactory agree-

ment with the experimental data. The results are given in table I for the four laboratory

materials. Comparisons between theory and experiment are shown in figures 3 and 4 in

two forms: as plots of the effective Minnaert exponent k(a) in figures 3(a) and 3(b) for
the first class of geometries and as plots of the normalized brightness b in figures 4(a)
and 4(b) for the second class.

As discussed in appendix B, Minnaert plots of the brightness for the first class of

geometries are nearly linear with slopes equal both to the k(ea)-exponent in equation (17)

and to the appropriate approximation (also discussed in appendix B) to the logarithmic
derivative of equation (16). The k(a) exponent contains the complete dependence of the
brightness on ao, al, and a 2 for these geometries; moreover, the specification of k

12



TABLE I.- EMPIRICAL PARAMETERS FOR LABORATORY MATERIALS

Material Mean particle a a a
diameter, Im 0 1 2

Colorado basalt (latite) 105 -0.40 0.28 0.32

Colorado basalt (latite) 225 -. 10 .26 .15

Basalt dune sand 125 -. 10 .25 .17

Basalt dune sand 210 .05 .20 .09

over the experimental range of a provides a convenient and concise method for repre-

senting the most important content of the numerous brightness measurements employed

in this case. Accordingly, the variation of k with a, rather than the variation of ':

with angles, was chosen as the mode of comparison between theory and experiment in

figure 3.

The comparisons shown in figures 3 and 4 indicate that for at least two different

classes of geometries, equation (16) adequately describes the photometric behavior of

the four laboratory samples, at least over the range of phase angle that was used in the

experiments. The noticeable but insignificant discontinuities in the slopes of the bright-

nesses at large phase angles in figure 4 are the result of the correction to equation (5).

Such discontinuities are to be expected at the points where the f of equation (5) is

replaced by f = 1 according to the procedure discussed after equation (9). Since, how-

ever, these two classes of geometries were used in the determination of the values of the

three parameters, additional comparisons for other geometries are desirable. Accord-

ingly, the same values of the photometric parameters were used with equation (16) for

coincident-plane variations of E, i being fixed first at 450 and then at 600. The results

are shown in figures 5 to 7; they are in very good agreement with experimental data over

the range in which comparisons can be made. This agreement indicates that equation (16)

and the values of the photometric parameters in table I are not restricted to the previous

scattering conditions. As previously explained, the limitations of the experimental appa-

ratus prevented measurements in the vicinity of a = 0 (the opposition effect), where

pronounced cusps occur in figures 5 to 7. Verification of the applicability of equation (16)

to other scattering geometries and, in particular, to scattering geometries corresponding

to noncoincident planes of incidence and emission has been obtained by Daniel J. Jobson

(presented in part in ref. 12) in brightness measurements on the Colorado basalt of

225 pm mean particle diameter.

Also shown in figure 5 is a dashed curve that was computed by use of the f of

equation (5) over the entire range of e, without the aforementioned correction for the

13



nonphysical behavior of that expression at large i or e. It is evident that the correc-

tion is important and that a straightforward application of the analysis in reference 3 can

result in a significant underestimate of the brightness at grazing incidence or emission.

Figure 5 was chosen to illustrate these errors because the laboratory sample it repre-

sents yields the largest experimentally determined value of a 2 , which corresponds to the

largest errors caused by the deficiencies in equation (5).

Some additional support for the validity of equation (16) and, more importantly, some

confidence in the general application of the photometric function can be obtained from ref-

erence 13 which presents brightness data for such diverse scattering surfaces as beach

sand, black loam, and green grass. These data exhibit a remarkable similarity to the

plot of equation (16) in figures 5 to 7 in three respects: a pronounced cusp at a = 0, an

increasing trend in brightness to the left and to the far right of the graph, and a broad

minimum in between. (Ref. 13 does not present sufficient data for the three photometric

parameters of eq. (16) to be determined for the substances studied in that reference.)

INTERPRETATION OF PHOTOMETRIC PARAMETERS

In addition to the good quantitative agreement between experimental data and the

surface brighnesses predicted by equation (16), the validity of the proposed photometric

function is further substantiated by the changes in the empirical parameters a0 , al,
and a 2 as the mean particle size is altered for a given material. For example, the

phase-function parameter a 0 is more negative in table I for the small particle sizes of

each material; thereby exhanced transmission through individual particles is suggested.

The same enhanced transmission is also displayed in figures 5 to 7, where the brightness

at large phase angles to the left in each figure is always higher (at a fixed value of i) for

the smaller particles than for the larger ones.

The parameter a, measures the amount of multiple scattering and thus relates to

the single-particle albedo. In table I, al increases for both materials as the particle

size decreases; hence, some of the radiation that would be absorbed by the larger particles

is transmitted through the smaller ones to be scattered again and partially to emerge as

reflected light. This interpretation is consistent with the observation that, for sufficiently
small particles, surfaces generally become brighter as the particle size is diminished.

Finally, the packing factor a 2 increases with decreasing particle size (table I) to

imply a less porous structure for the small-particle surfaces and correspondingly smaller

opposition effects, which are seen in figure 4 as a smaller rate of change in the slope

of $ as the phase angle approaches zero. Such behavior of a 2 may be the result of

the smaller apertures between the particles of the small-particle samples; these smaller
apertures could cause greater diffraction of the light passing through these apertures and
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thus correspond to an increase in the apparent packing of the surface as deduced from

photometry. As mentioned previously in the discussion after equation (8), diffraction

probably causes p to exceed the mean particle radius and thereby increases the value

of a 2 . The fact that three of the four values of a 2 in table I exceed the upper limit

0.125 imposed by a strict geometric interpretation of p as the mean particle radius and

corresponding to p = 0.5n-1/3 might be regarded as support for the importance of

strong diffraction. Brightness measurements with some wavelength discrimination are

obviously desirable to provide additional information on this point because diffraction

would cause a 2 to increase with increasing wavelength.

CONCLUDING REMARKS

A photometric function has been proposed that appears to give reliable descriptions

of the diffuse reflection of radiation by particulate materials. It was designed to yield

accurate results in the opposing limits of very low albedo and very high levels of multiple

scattering and has been shown to be in satisfactory agreement with laboratory measure-

ments on materials lying between these two extremes. Small discrepancies between

theory and experiment at large angles of incidence or emission are explained in terms of

the approximations made in the shadowing corrections to the classical theory of radiative

transfer.

The function is applicable to such problems as the extrapolation of planetary bright-

ness measurements over wide ranges of scattering geometries. It can also be applied to

the deduction of compactness, particle size, and single-particle albedo of planetary sur-

faces by the evaluation of the empirical parameters in the function. Observed changes in

these parameters with changes in the laboratory samples have been shown to be consis-

tent with the theoretical interpretations, and this consistency furnishes evidence of the

validity of the proposed function. Future research in this field should include spectral

determinations of the photometric parameters ao, al, and a 2 . All these parameters

are expected to be functions of the wavelength because of diffraction effects. A verifica-

tion of the predicted wavelength dependence will lend additional support to the theory and

aid in the deduction of surface properties from photometric measurements.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., February 5, 1975.
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APPENDIX A

DERIVATION OF SHADOWING-CORRECTION FACTOR

FOR SINGLE SCATTERING

The purpose of this appendix is to define the shadowing-correction factor f and to

derive its form for general scattering geometries. The development generally follows

that of reference 3 which does not explicitly define a shadowing-correction factor and uses

substantially different notation. ,This appendix also shows explicitly how the shadowing-

correction factor becomes invalid for grazing angles of incidence or emission and sug-

gests a simple procedure for correcting the deficiency.

Figure 8 shows the scattering geometry for a beam of radiation incident on a parti-

cle located at the origin of the ,,z coordinate system. The beam is scattered into the

direction of the c-axis and the coordinate system is oriented so that the ,q-plane coin-

cides with the scattering plane. (That is, the ,7-plane contains the beams of incidence

and emission.) The plane shown cutting the coordinate system represents the surface of

the reflecting material and lies at the perpendicular distance h above the scattering

particle. In addition to the angle of incidence i, the angle of emission E, and the phase

angle a between the incident and emitted beams, a fourth angle y is introduced as the

angle between the 71-axis and the projection of h onto the -,z-plane. Useful expressions

that can be obtained directly from figure 8 are the equation for y as a function of i,

E, and a and the equation for the plane of the surface. These expressions are

' = cs-1 (cos i - cos E cos a (Al)
y co 1sin E sin a

and

Scos E + i sin E cosy h - z sin E sin y (A2)

According to the principles of geometrical optics and with the restriction to single

scattering, an incident photon will reach the scattering particle in figure 8, will be scat-

tered, and will emerge from the material only if no particle center lies within the vol-

ume enclosed by two imaginary cylinders (radii equal to the average particle radius p)

extending from the scattering particle to the surface along the directions of incidence and

emission. The probability for no particle center to lie within this volume is given by the

expression
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APPENDIX A

P = 1 - v 1- n(v - v') exp n(v - v (A3)

where n = N/V is the number density of particles comprising the particulate material,
v is the sum of the volumes of the cylinders of incidence and emission, and v' is the

overlap volume between these two cylinders that must be subtracted from v in order

not to be counted twice.

If, on the other hand, the particles are sufficiently separated that each particle is

in the far field for scattering by every other particle, the geometrical optics approxima-

tion breaks down, shadowing fails to occur, and the overlap volume v' should be counted

twice in computing the total attenuation of the incident and emitted beam. The proba-

bility P for this latter case, as opposed to the P in equation (A3) for planetary sur-

faces, yields the Chandrasekhar result for atmospheres that appears in equation (3).

Hence, the shadowing-correction factor f to the first-order solution of Chandrasekhar's

radiative transfer equation can be defined as follows for a semi-infinite particulate

material:

S p v- _ 2 (cos i + cos. exp C-(v - v1 dh (A4)
S  - dh cos i cos E '>0
exp (-nv) dh

Figure 9 shows the intersections with the plane z = z in figure 8 of the material

surface (line (1)), the cylinder of incidence, and the cylinder of emission. The equation

for line (1) is given by equation (A2) and the equations for lines (2) and (3) are

S(p2 z 2 ) 1/2 (A5)

and

, sin a - j cos a = p2 -z2 (A6)

respectively. If line (1) is ignored for the moment, the overlap area A' common to

both cylinders is

A' = (p2 - z2)(1 + cos a) (A7)
sin a
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so that the total overlap volume V' of the two cylinders can be written

V' = 2 A' dz _ 4p 3 (1 + cos a) i (A8)10 3 sin a n

The volume V' in equation (A8) is to be equated to the volume v' in equation (A4)

for all particles so that the overlap volume of the two cylinders is entirely contained

within the scattering medium. For particles lying closer to the surface, the area A"

bounded by lines (1), (2), and (3) in figure 9 and given by the following expression must

be considered:

2122 1/21/2

A"= 1 - z2) cos e - h sin a + z sin a sin e sin y
sin a cos

+ rj(cos a cos E + sin a sin E cos dr

(COS i + COS E)2 2 2 1/2 _(l +2)1/2 g2= cs- zoE - px 1 + g2) + gz (A9)
2 sin a cos i cos E

Equation (Al) and the definition

x = h sin a (A10)

p(cos i + cos E) (1 + g2

where

g sin a sin E sin y(All)
cos i + cos E

have been used in the evaluation of the integral, the lower limit 71 of which corresponds
to the null integrand.

The area A" is zero when

z z 1 = p(1 + g2)-1/2 (1 - 2)1/ (A12)
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and

z =z 2 = p( + g2) 12 1 gx + -x2)1/2] (A13)

which values appear as integration limits in the formula

v B2 A" dz = - (2 +x2)(1 x2)1/2 - 3x(n - 2 sin-1x (A14)

for that part of the overlap volume situated outside the scattering medium. The new

parameter v is defined by the relation

S=rnp3(1 + g2)l/2(cos i + cos e)2
sin ca cos i COS

Srnp 3 (cos i +c cos E)) cos i cos 1/2 (A15)
sin a cos i cos E

Accordingly, the overlap volume contained within the scattering material is given

by

V' - = - v - _ 2(2 + 2) - x2)1/2- 3x( -2 sin-lxl (A16)
n n 6 7n

if the surface intersects the total overlap volume and by

v' = - (A17)
n

if the surface does not intersect the total overlap volume. The dividing line between these

two expressions occurs at x = 1, which is obtained by setting v" equal to zero in equa-

tion (A14). Although reference 3 uses equation (A16) over the entire range 0 < x 5 1,

the reader should be cautioned that the formula is not valid for particles that are so close

to the surface as to cause line (1) in figure 9 to intersect one or both of the bases of the

cylinders of incidence and emission. The deficiency is especially important near grazing

incidence or emission because surface-layer particles dominate the reflectance in such

cases. For example, the limit of the v' in equation (A16) at x = 0 and for i or E
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equal to n/2 is --; this limit causes the shadowing-correction factor f defined by
equation (A4) to vanish. The correct expression for f can never be less than unity
because shadowing only operates to decrease the attenuation of the radiation and thus to

increase the surface brightness.

The substitution into equation (A4) of equations (A16) and (A17) and the formula

v =p2h( + ) (A18)

for the sum of the volumes of the cylinders of incidence and emission (corresponding to a

particle that is sufficiently deep for the surface of the material not to intersect the base

of either cylinder) yields

f = e--"+ v 1 exp - L2 2 + x2 1 - 1/2 + 3x( + 2 sin-1x) dx (A19)

for the shadowing-correction factor of reference 3. Equation (A19) and equations (A8)

and (A15) for 1i and v, respectively, also specify the shadowing correction employed
in the present research, but with the important exception that f is replaced by unity
whenever equation (A19) gives f below that value. This rather crude, but experimentally
justified, procedure for correcting the aforementioned deficiency near grazing angles of
incidence or emission is introduced because of a fundamental difficulty associated with
the extension of the geometrical cylinder concept to surface-layer particles. The value
of v given by equation (A18) occurs in the exact solution (see eq. (3)) of Chandrasekhar's
first-order radiative transfer equation for all values of x, including x = 0, even though
equation (A18) is not the true sum of the cylinder volumes for sufficiently small x.
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COMPARISON WITH MINNAERT'S FUNCTION

Because the Minnaert photometric function of equation (17) is the analytic form

almost invariably used to correlate measured brightness data regardless of the scatter-

ing geometry, a comparison of it with the photometric function developed in this paper is

important. Minnaert' s function is a simple empirical generalization of Lambert's law and

has very insufficient basis in theory. It has been used successfully, however, to corre-

late brightness measurements of the Martian surface. (See refs. 7, 8, and 9.) The meas-

urements were made for the special class of scattering geometries corresponding to coin-

cident plane variations in i and E with the phase angle a held fixed. They yielded

approximately linear curves in so-called Minnaert plots of log (4 cos E) plotted against

log (cos i cos E) at constant a; this behavior is predicted by equation (17). Seldom,
though, have the measurements been extended to very large departures from the mirror-

point geometry (that is, equal incident and emission angles on opposite sides of the surface

normal) or to large phase angles (for example, a = 220 in Mariner 6 and 7 far-encounter

data and a _ 18.50 for the Earth-based measurements of Binder and Jones (ref. 8));

therefore, nonlinear portions of Minnaert plots may well exist without contradicting the

available experimental evidence.

Some basic insight into the characteristics of Minnaert plots of equation (14) may

be gained by looking at the Lommel-Seeliger limit of 4 as al and a 2 approach zero

and f .approaches unity. The conclusions should be qualitatively general because the

shadowing-correction factor f should exert a major influence only near zero phase

angle and the Lambert term corresponds to a linear Minnaert plot of slope unity. The

differentiation (for fixed a) with respect to loge (cos i cos E) of the natural logarithm

of the expression

4 (Lommel-Seeliger) cos E 2p(a) cos i cos E (B1)
p(0)(cos i + cos E)

is required.

If the angular deviation 5 from the mirror-point geometry is defined by the

expression

5=i E (B2)
2 2
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the following relations are valid through low-order expansions in 6:

2 3

cos i + cos E = (2 - 52 + co 2 (B4)

E(2_2+6) (B4)
12 2

and

d(loge cos i cos E) 2 3 cos 2  d( 2 )

Hence, the Minnaert-plot slope of equation (B1) is given by

Slope d [og ( Cos os E
d(loge cos i cos e) cos i + cos E

cos3-92
c 2s3 2 262 d (2 2 4

1+ + 2- +
cos i + cos 3 cos2) d(62) + 12

62

= 1 - cos 2  + - sin2  (B6)
2 2 2 2

If the first two terms in equation (B6) are identified with the Minnaert exponent k(a)

in equation (17), the Lommel-Seeliger function (and thus the proposed function as well) is

accurately approximated by a Minnaert function over a significant range of 6, especially

for small a; hence, equation (14) is consistent with the limited planetary data for this

particular class of scattering geometries. Equation (B6) also predicts increases in

Minnaert-plot slopes for sufficiently large values of 6 (that is, small values of

cos i cos E). Direct experimental evidence of such behavior is shown in figure 10, where

a typical set of brightness data points for one of the laboratory materials is plotted in

Minnaert coordinates. The measured values are shown as solid circles, a straight line

being shown for comparison. The trend toward greater slopes as 6 increases to the left

in the figure is typical of the test surfaces. Also typical is the linear section of the curve

extending for some distance from the mirror point which is at the right-hand end of the
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curve, where 6 = 0. The slight deviation from linearity in the immediate neighborhood

of the mirror point is attributable to the experimental apparatus.

The constant part of the slope of a Minnaert plot of equation (16) is obtained from

the equation

dflog (,b cos EJ
k(a) = lim e (B7)

6-0 d log e (cos i cos E&=Constant

and is given by

k(c) 1 O a p(a) H(a) - al cos(a/2)
k(a) I - I cos 2 9 - 1 s2 (a/2) (B8)

2 2 p(a) G(a) + 2al cos(a/2)

where

4Ta 2 tan2 (a/2) ( 4a 2 (1 - 3 + cos e
H(a) = sJ 1 (a) - exp o (B9)

sin a 3 sin a

4 a2 4a2(1 - 37 + cos a)
G(a) sin 2( ) + exp 3 sin (B10)

2a2 3x7 + 6x sin-1x + 2 (2 + x2) (1- x2J 1 (a) = J2(a) - sin [ I

3 sin a

(B11)

1 (2a2 - 2

0 3 sin

(B12)
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(a) Colorado basalt.
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(b) Basalt dune sand.

Figure 1.- Relative frequency (number of particles per particle size

increment) in percent as function of particle diameter.
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Figure 2.- Photograph of photometric apparatus.
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(a) Colorado basalt with mean particle diameters of 105 im and 225 tm.

Figure 3.- Comparisons between theory and experiment of Minnaert exponent as

function of phase angle.
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(b) Basalt dune sand with mean particle diameters of 125 Am and 210 pm.

Figure 3.- Concluded.
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(a) Colorado basalt with mean particle diameters of 105 gm and 225 pm.

Figure 4.- Experimental and theoretical normalized brightnesses as functions of
phase angle for emission angle fixed at 00.
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(b) Basalt dune sand with mean particle diameters of 125 Lm and 210 Ipm.

Figure 4.- Concluded.
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E - Equation (16)
S-- -- Equation ( 16 ) ( uncorrected )
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i= E45* i E=60*
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Figure 5.- Experimental and theoretical normalized brightnesses as functions of

emission angle for incidence angle fixed at 450 and 600. Colorado basalt (mean

particle size, 105 Aim). The dashed line is the incorrect behavior of the norma-

lized brightness that results from the use of equation (5) without correction for

the nonphysical behavior of that expression at large i or E.
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Figure 6.- Experimental and theoretical normalized brightnesses as functions of
emission angle for incidence angle fixed at 450 and 600. Colorado basalt
(mean particle size, 225 /im).
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(a) Basalt dune sand (mean particle size, 125 /im).

Figure 7.- Experimental and theoretical normalized brightnesses as functions of

emission angle for incidence angle fixed at 450 and 600

33



1.0

.8-

e i=45*

. i= 60*

CO .4
E - Equation ( 16)

, Measurement

.2-

i = 45 i -E =60*

80 60 40 20 0 20 40 60 80

Emission angle, E , deg

(b) Basalt dune sand (mean particle size, 210 im).

Figure 7.- Concluded.
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Emitted beam

Incident beam

h z

Figure 8.- Scattering geometry for a beam of radiation incident on a

particle located at the origin of the ,,z coordinate system.
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Cylinder of incidence
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(2)

Cylinder of emission
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Figure 9.- Intersection with the plane z = z in figure 8 of the

material surface (line (1)), the cylinder of incidence, and the

cylinder of emission.
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Figure 10.- Minnaert plot of laboratory brightness measurements on
basalt dune sand (mean particle size, 210 pim). Phase angle fixed
at 300.
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